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Abstract. Calculating the capacity and generalization capabilities of feed-forward multilayer 
neural networks requires the use of replica-symmetry-breaking methods. d i n g  the ulcuiation 
practically unfeasible. Replica symmetry is broken because the eonfigmion space is 
disconnected. which is clearly the case in the capacity limit where the configuration space 
shrinks to isolated points. Moreover, there is no knowledge about the number of replica- 
symmetry-breakhg steps required to obtain reliable results. Novel approaches to tackle the 
capacity calculation of feed-fonuard neural networks avoiding the use of replica-symmetry- 
breaking methods are presented in this paper. The basic idea behind these approaches is that 
breaking explicit symmetries of the network prior to the capacity calculation itself restores 
order-parameter symmetry, at least to a good approximation, and therefore enables the use of 
the replica-symmetry ansafr. Two methods are presented for breaking the explicit symmetries 
and restoring r e p k a  symmeuy; one restricts relations between the various weight elements while 
the other restricts the values of the order parameters. These methods, which are demonstrated 
in this work via the capacity calculation of feed.fonvard neural networks, are applicable to B 

variety of capacity, learning and generalization capability calculations of such nets. We examine 
an approximation for carrying out the multi.dimensiona1 Gaussian integrals appearing during the 
calculation as well as exact results for some simple cases. Numerical results obtained for nets 
with one to six hidden neurons using the downhill simplex and adaptive simulated-annealing 
optimization algorithms are in good agreement with simulation results 

1. Introduction 

The powerful techniques of statistical mechanics have been used for some time to formulate 
and calculate properties of simplified neural network models. This work has been related 
mostly to the single-layer perceptron [1,2] due to its simplicity and the feasibility of the 
analysis (for a review see [3]). One of the most important of these methods is the replica 
method, applicable for many of the calculations examining properties of perceptrons, as 
well as some simple multilayer configurations [7-91. The method involves replacing the 
average over the configuration space by an average over a set of replicas of that space, 
defining ‘order parameters’ which represent statistical characteristics of the configuration 
space. The method is particularly successful and applicable when these order parameters 
obey some symmetry restrictions, in particular when replica symmetry itself is exact or a 
good approximation. One of the main limitations of this method for analysing multilayer 
perceptrons is that this symmetry is not valid, resulting in the use of complicated structures 
of broken replica symmetry [4]. Replica-symmetry-breaking methods, though useful for a 
variety of calculations, make the calculation rather difficult and hardly give any indication 
for the number of replica-symmetry-breaking steps required for obtaining a reliable result. 

0305-447W94/082719t16$1950 0 1994 IOP Publishing Ltd 2119 



2720 D Saad 

The broken symmetry results from discontinuities in the configuration space which are 
exposed most clearly in  the capacity limit where single points in configuration space 
represent solution parameters to the desired inpuUoutput mapping. The same problems 
appear in learning and generalization tasks below a certain temperature and after learning a 
large number of training patterns, where the configuration space becomes disconnected and 
replica symmetry is broken. 

In this paper we introduce two novel methods, one for removing the main cause for 
replica-symmetry breaking in multilayer neural networks and one for enforcing replica 
symmetry using a microcanonical distribution. The idea is to break explicit (and redundant) 
symmetries that exist in these nets prior to the calculation itself. This makes the replica 
method more applicable for exploring properties of such nets. The two methods introduced 
in this paper result in an identical end expression and thus equivalent results. 

Examining the two-layer perceptron with N neurons in the input layer, M hidden units 
and a single output neuron, all with a binary activation function, one easily notices that 
there are several internal symmetries within the group of nets capable of implementing a 
certain input-output mapping (we shall call them solution nets for a particular mapping). 
We assume that for a given input-output relation one obtains a certain solution represented 
by the set of weights wij connecting input nodes (represented by the index j )  to the hidden 
units (represented by the index i) and the weight vector with components ui connecting the 
hidden units to the output unit. This solution is obviously not unique since applying either 
of the following group operators will produce another solution which is in general different 
from the initial one. 

Hidden-node permutation in which w;, -+ w ~ j  and U ;  -+ UX, where k is an index 
reorganization. Obviously there are M !  operators in this permutation group and therefore 
M !  different solutions are produced from each and every single solution. 
Hidden-node reflection, so that wij -+ -wit and U; -+ - U ;  for a certain sub-group of 
the hidden nodes I, where i E I .  This reflection group includes 2M different operators 
each generating different equivalent solutions for each single solution. 

Provided that there are no redundant hidden neurons in the solution, the number of 
solutions generated by the two of them together for a single solution is 2"M!.  Having a 
certain number of 'true solutions' L, which are not simply generated from the same solution 
by applying the various operators, one obtains immediately L2MW! different solutions. 
These additional solutions significantly complicate the structure of the order parameters used 
in the replica method to estimate capacities, generalization capabilities, etc. For example, 
one can show that for a single 'me  solution' with one original order parameter calculating 
the overlap of each solution pair, one obtains I and 34 different order parameters for the two 
and three hidden unit cases, respectively, just by applying the real weight-space symmetries 
when there are no other restrictions imposed upon the solutions; the number of these spurious 
order parameters grows exponentially with the increase in the number of hidden units. 

On top of these symmetry groups there are at least two other equivalence groups, but 
these groups do not seem to affect the order parameters in the thermodynamic limit. ?he 
first of these equivalence groups is the 'tilting' group, resulting from the discreteness of the 
input and internal representations spaces, allowing the ( N  - 1)-dimensional hyperplanes, 
related to each one of the weight vectors between the input and hidden nodes, to tilt in 
N - 1 independent directions between discrete vectors representing the input vectors. A 
similar equivalence group exists for the (M - 1)-dimensional hyperplane related to the 
hidden to output weight vector. The (N - 1)- or (M - 1)-dimensional cone of solution 
vectors generated by the possible tilting shrinks as 6(1/N) (or 0(1/M)) and is therefore 



Capaciry of multilayer neural networks 212 1 

not significant in the thermodynamic limitt. The second equivalence group is the group 
of permutations of rhe infernal represenrationsf; fixing a certain solution vector between 
the hidden and output layers one can permute the group of internal representations related 
to the same output among themselves without affecting the actual output, forcing diferent 
input to hidden relations (and weights) each time. However, this equivalence group keeps 
the spatial relation between the various input to hidden weight vectors (actually the order 
parameters) constant and therefore does not have a substantial effect on the calculation. 

The methods described in this paper suggest that deliberate external symmetry breaking 
should be performed prior to the calculation itself in order to eliminate this redundancy 
of solutions and to alleviate the replica-symmetry-breaking problem. Two methods are 
considered: one, based on restricting relations between the weight elements, is designed 
only to break the explicit symmetries described above, while the other, based on restricting 
the order parameters themselves, restores replica symmetry in the capacity limit. For the first 
method, it can be easily proven that in small systems, with a small number of hidden units, 
this ordering actually restores replica symmetry; however, there is no general proof yet 
that this is the case for any number of hidden neurons. The second method, for restoring 
replica symmetry is based on forcing additional restrictions on the configuration space, 
which require replica symmetry themselves. This method, which will be obvious when we 
reach the order-parameter definition stage, is effectively a microcanonical method which 
assigns certain order parameters to a fixed value (approaching 1 in the capacity limit)§. 

The two methods are demonstrated in this paper via the two-layer perceptron-capacity 
calculation. However, they are applicable for a wide range of capacity and leaming-analysis 
calculations. 

Former attempts to calculate the capacity of multi-layer nets via statistical mechanics 
methods [7, 81 simplified the net by considering committee and parity machines with non- 
overlapping receptive fields for the hidden neurons. This avoids part of the computational 
difficulties resulting from the possible correlation between hidden neurons' representations. 
In this paper, the problem is tackled by examining all of the possible internal representations, 
in a search for the extreme case in which there is a single set of internal representations 
and weight matrices (under the restrictions discussed above) that performs the task. An 
approximation for carrying out the multi-dimensional Gaussian integrals appearing along 
the calculation is suggested, and special cases which have an exact analytical solution are 
examined. 

Due to the complexity of the expressions we use numerical optimization methods for 
obtaining the order parameters and the capacity limit. The numerical results are examined 
in comparison with theoretical and simulation results obtained for similar configurations 
elsewhere. 

In the next section (section 2) we explain the main ideas behind the two methods aimed 
at alleviating the replica-symmetry-breaking problem and then carry out the calculation 
itself in section 3. Some simple cases as well as the general case are examined explicitly 

t One should note that for nets with a small number of hidden units this is a problem since there is no uniqueness 
for the hidden-to-output vector due to the fact that 0 ( 1 / M )  might no1 be small enough. One can o v m m e  h i s  
problem by enforcing additional restrictions on the solution weights like larger margins from the hyperplane (the 
parameter K inmduced in (2)) etc. 
$ Internal representations am defined as the representations of input vectors in the hidden layer@) for a given ne1 
characterized by a cemin set of weights and activation functions. 
0 It is important IO note that forcing the system IO possess replica symmetly mighr result in an oversimplification 
of the configuration space and uninteresting results. In the present calculation we show that forcing replica 
symmetly produces similar end results to eliminating redundonf symmetries; we therefore do not expect such an 
oversimplification in the current calculation. 
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in section 4; these are solved numerically and compared to simulation results for several 
small nets in section 5 .  

2. Breaking explicit symmetries versus restoring replica symmetry 

The two methods introduced in this paper are significantly different, though their final goal 
is similar, i.e. to alleviate the replica-symmetry-breaking problem. 

The first method is aimed at the redundant explicit symmetries of the solution space. 
The goal is to break the symmetries by adding a restriction on the configuration space, 
admitting only a single exemplar from the entire permutation-reflection group. 

The easiest method of breaking the explicit symmetries is by forcing the system's weight 
vector U to have positive values ordered according to their values, i.e. ui > U)+, . This 
ordering leaves no residual symmetry in real weight-space; it keeps a single exemplar from 
each and every set generated by the permutation-reflection group. Moreover, it was recently 
proven [5, 61 that for the case of common continuous activation functions, eliminating the 
permutation-reflection equivalence group implies that the solution is unique and thus that 
the symmetry of the system's order parameter is restored. As we mentioned earlier, in the 
case of binary-activation functions, this method restores replica symmetry for small systems 
but there is no proof that this is the case in general. Using this method one can carry out 
the calculation with no residual symmetries left. 

The second method, designed to restore replica symmetry is based on restricting the 
order-parameter space (and the configuration space as well) in a manner that requires replica 
symmetry. A necessary condition for replica symmetry is that the configuration space for 
the solution parameters is connected. Considering a certain conrinuous normalized solution- 
weight vector in configuration space one can always find a connected region of solution 
parameters confined within a multi-dimensional sphere with a radius p in the vicinity of the 
original solution. Restricting the various (unit) solutions to have an overlap greater than 
1 - 2p2 forces all solutions (represented in the various replicas) to be confined to the same 
connected region in the vicinity of the end solution vector. 

While for sub-optimal capacities, one can define a minimal overlap between different 
replicas, sufficient for keeping the configuration space connected, in the capacity limit this 
restriction results in a unique solution, i.e. an overlap of 1 between the same weight vectors 
of different replicas. 

It is interesting to note that recently Meir and Fontanari [lo, 1 I], calculating the capacity 
of a perceptron with discrete weights, showed that by using the micro-canonical distribution 
and the replica-symmetry ansatz they obtain similar results to those obtained by replica- 
symmetry-breaking methods. Using the micro-canonical distribution forces the energy of the 
solution to be in a certain value and thus filters out all other solutions with different energies. 
Since for systems with discrete weights, examined in their paper, each different combination 
of weights produces a different energy, this restriction actually chooses a certain solution, 
restoring replica symmetry. In their work Meir and Fontanari [IO, 111 actually show that 
in breaking the system's symmetry by restricting the configuration space one can retrieve 
replica symmetry and obtain similar results to those achieved by considering the entire 
configuration space and using the replica-symmetry-breaking ansatz. 

3. Computing the capacity 

We start by computing the capacity of the two-layer perceptron using the first method, 
designed simply to break explicit symmetries. Later on we explain the second method, 
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designed to restore replica symmetry explicitly, noting the variations obtained in  the 
expressions. 

In order to compute the capacity of the two-layer perceptron with binary activation 
functions we use Gardner’s method [ 11, based on measuring the normalized weight-space 
volume enabling the mapping of p inputloutput relations of vectors: 

e,, = 0 (ut - ui+, - e )  . 
The numerator in (1) represents the volume of the weight space that together with a certain 
set of internal representations enables the storage of p patterns under the spherical constraint 
and ordering restrictions, while the denominator represents the volume of the entire relevant 
weight space. We expect the relevant volume of the configuration space to shrink to a 
single point in the capacity limit. The first two step functions (represented by 0). assure 
the required mapping of the input vectors E’ onto the set of internal representations E” and 
of the internal representations onto the output values <’, where & is the pattern index, with 
a certain margin K from the separating hyperplane; the third step function keeps an interval 
e between successive-ordered weight elements. The indices i and j are the hidden and 
input site indices, w and U are the sets of weights connecting the input to hidden nodes 
and the hidden to output nodes, respectively; N and M are the number of input and hidden 
neurons, respectively, and 1 / m  is used for normalizing the expressions. The vector 
component uM+] is set to zero thus forcing the vector U to be positive. 

The denominator, as well as the last terms in the numerator, results from the spherical 
constraint for the two sets of weights 

The numerator includes two new elements in comparison with the conventional 
expression. The first is a summation over the entire space of possible internal representations 
that might connect the two sets of weights w and U, while the second is an ordering 
term, forcing the weight vector U to be positive and ordered according to the values of 
its components. Note that the summation over all internal representations selects only one 
set of internal representations for each choice of weight and input vectors so that double 
counting does not occur. 

Since the statistically relevant quantity is the average over the pattern distribution of 
the logarithm of V (due to its relation to the free energy [l]), we introduce replicas of the 
set of weights and internal representations, LO;, U: and cy, where LY is the replica index, 
in averaging the value of V” . 

The principle of the calculation involves the introduction of integral representations 
which permit the discrete summation to be carried out. Normally the parameters of the 
resulting multi-dimensional integrals are evaluated by solving the saddle-point equations. 
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Here, due to the complexity of the expression, we will find the optimal parameters using a 
numerical optimization technique. 

Replacing all of the 0 functions by their integral form 

where we introduce the integration variables Ay, xr, yP', U; and z;. Similarly, the 
spherical constraint integral representations introduce the order parameters E~ and E; for 
the weight vectors ua and matrices w", respectively. Averaging over all input and output 
vectors E' and r p  in the large-N limit, one obtains for the main term of the numerator 

using the convention Dx = (dx/,&)e-z2/2. 

the entire numerator term becomes (omitting the p index and the weight integrations): 
Summing over all possible internal representations and applying the Gaussian trick again, 

The entire numerator term consists of two main expressions: the first, in the curly 
brackets, depends on the patterns (p-dependent) representing restrictions imposed by the 
inputloutput vectors themselves; the second represents general restrictions imposed on the 
solution vectorshatrices such as spherical constraint and weight ordering. 

Carrying out the s and rj integrations one can rewrite the main term (pdependent) of 
(6) as 
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where the order parameters are defined by 

The incentive for introducing these order parameters is that they represent statistical 
properties of the configuration space, some of which are_of order 1 (like the overlap of two 
weight vectors of the same replica and hidden node-Qy) while others are significantly 
smaller, representing weaker correlations between weight vectors related to different nodes 
and different replicas. 

These order-parameter definitions are expressed explicitly by introducing 8 functions; 
these functions take an integral form, defining a set of  coupled integration variables: F,:'. e, E?@, D$, 5; for the following order parameters Q$, & e":', Pz' and e, 
respectively. 

At this point, we can actually introduce the second method, designed to restore replica 
symmetry. As a condition for replica symmetry we require, in the capacity-limit, an 
overlap of 1 between the same weight vectors of different replicas. Forcing QP' = y .  
where y + 1 ,  requires effectively replica symmetry. Practically we should simply replace 
the ordering term nfl, in the numerator of (1) by a term that will take the form 
S(y - ( l / N ) Z &  W ; ~ W ~ ~ ) .  where y --f 1 at the present stage. This results in a similar 
expression to the one obtained using the first method, excluding the ordering term (the last 
term of (6)). 

We shall cany on the calculation using the first method of breaking explicit symmetries, 
indicating the differences in the expressions obtained by using the second method (basically, 
omitting ordering terms and replacing zB by y ,  where y + 1). 

Applying the replica-symmetry ansatz 111 we can accumulate the various terms: terms 
which include the weight matrix elements w P , ,  those including the weight vector elements 
U ; ,  the free terms which include the order parameter and the main term including all terms 
with the vector index p. At !his stage we set the margin parameter K to zero for carrying 
out the basic capacity calculation (this parameter is anyway only 'nice to have' for imposing 
additional restrictions on the configuration space). 

Integrating the main term (7) and the ordering term using the Gaussian trick and 
rewriting the entire expression as enMNG. where n + 0 is the number of replicas, one 
obtains the following expression for G (omitting constants and setting K to zero): 
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In this equation a, represents the number of stored patterns normalized with respect to M N ,  
the matrices A, B, C. V, &, 7, R and S and the vector q are 

- Fjk 
v j k  P j k  

s j k  E - D j k  R j k  6 j k E  - 2 D j k  c. j k  = - P .  I k .  

&jp EZ 6 j k E k  - (1 - 8 j k ) F j k  3 j k  E - 6 j k F k  - (1 - 6 j R ) -  2 
A - 

We assume that the matices are positive-definite since they cause a divergence of the term 
G otherwise. 

Equation (E) is the cornerstone of the calculation and represents an extention of 
Gardner's expression [ I ]  to the multi-dimensional case. Using the second method, designed 
to restore replica symmetry, results in a similar expression, excluding the following ordering 
term integrals: 

and replacing & by y 

4. Simple configurations and the general case 

Examining expression (8) for the single hidden neuron case it  is easy to see the similarity 
between (E) and Gardner's expression; most of the expression keeps its form, with the 
multi-dimensional integrals reducing to simple integrals and the matrix expressions to 
corresponding scalars. In this case there is no ordering and the hidden to output weight is 
always 1,  so the entire expression collapses back to Gardner's expression giving the same 
results: - 

The two hidden-neuron case looks at first sight identical to the previous case since when 
we order the weights we create one dominant weight. However, if we allow equality of 
weights (e = 0) and define an activation of zero to result in a positive output (we could 
equally define it  as negative), we actually have a larger capacity which can be computed 
using different methods as well (see appendix A). Although, in this case there is no ordering 
and the hidden-to-output weight vector is unique, there is no simple analytical result since 
two-dimensional Gaussian integrals with a general lower limit cannot be carried out. A 
slight simplification of (8) for the two-dimensional case can be introduced: 
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dA e-i({+g)/(l - i z ) + ( A i ~ b ) / ( t - ~ z )  

+ ~ F Q - Z F Q + ~ F I Q I + ~ F ~ Q ~ + ~ E I + ~ E Z  1 I -- I - -  1 " "  
4 

where A S k / &  all vectors are two dimensional, 
and the b integral is indefinite. 

Returning to the general case of M hidden units, note that up until now no 
approximations were made. However, one cannot carry out multi-dimensional integrals from 
a general lower limit to infinity analytically. We therefore use Kendall's [ 121 approximation 
(see appendix B) to simplify the expression for G. In order to use the two most dominant 
terms of Kendall's approximations the following two assumptions were used. 

(i) [A - B ] j k  << [ A  - B ] k k  for k # j .  This assumption can be explained easily by the 
different forms of the diagor$ and non-diagonal terms in A - 0. The diagonal terms are 
of the form 1 - &, where Qk < 1 and the difference is therefore always a positive small 
value, constantly decreasing as one vproaches the capacity limit. The off-diagonal terms 
on the other hand are of thz form Q j k  - Q j k ,  where Qjk  can approach Gik either from 
above or from below since Q,k is not expected to have a particularly high value (obviously 
if i t  does the probabilities that Q j k  will reach 2 , k  from above and from below will be 
significantly different due to the fact that Q j k  c 1) .  Therefore we expect the off-diagonal 
terms to be always small, particularly in comparison with the diagonal terms. 
(ii) [R - SI;' << [R - SI: for k # j ,  where [R - SI-' is defined as 

[e^-  Q l / ( V ' ~ V ' ~ ) ,  ?k 

- - - 

- 
[ R - S l j k  [ R - S 1 m l  

l<k,&j 

This assumption results from the relations between the diagonal ancoff-diagonal elements 
in these matrices. Diagonal elementsare of the form E + D k k  - 2 D k k ,  while off-diagonal 
elements are of the form D j k  - 2 ~ j k  and in the capacity limit D i k  --t f i j k  for all k 
and j .  Examining these integration parameters closely one can show that, in that limit. - - 
[R - SI; << [R - SI,-,'. 

At this stage we can set the second margin parameter e to zero for carrying out the basic 
capacity calculation (like K ,  e is only 'nice to have' for imposing additional restrictions 
on the configuration space). Setting e to zero actually makes the weight ordering slightly 
different, allowing equality of adjacent weights; cmying out the calculation for e # 0 is 
feasible (see appendix C) and produces minor modifications to expression (8). As explained 
earlier, the parameter e can be useful, especially for small-system calculations, adding 
restrictions to the configuration space and forcing it to converge to a single point. 

Carrying out the approximations to the multi-dimensional Gaussian integrations (see 
appendix C), expression (8) can then be reduced to 

1 1 
2M 2M G = - log Id - 01 + - @[(A - 0)-]0] 

1 1 
2 M N  2 M N  

-- log IR - SI - - tr[(R - s)-'Sl 
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(11) 
where I is the identity matrix and 

1 j > k  - -  
[R-Sljk -[(R-s),;'(R-s),-,']-i 7;k E 1 0 otherwise. 

The corresponding expression, using the second method for restoring replica symmetry is 
similar, excluding the R, S, 7 and $ terms. 

Expression (11) can now be optimized since there are no more multi-dimensional 
integrations (the Gaussian integration over T can be easily approximated using Kendall's 
expression. and in any case it doesn't play a significant role in the optimization process). 
Moreover, since we ordered the weights we can assume that, in the capacity limit, all of the 
matrix elements Djk + c j k .  These matrix elements are products of the various components 
in the weight vector U which converges now to a single point in configuration space. Note 
that this limit can be taken only if there are no redundant neurons and if the weights are 
ordered since it requires a convergence of the parameters to a single point in configuration 
space. For example, in the two-hidden-neuron case this forces the outgoing weights of the 
hidden neurons IO be equal since one hidden neuron is otherwise dominant, making the 
other neuron redundant. 

Using this limit results in a much simpler expression for (1 I), having only the A and 
I3 terms and no ordering terms. The second method for restoring replica symmetry yields 
a similar end result, using a similar assumption for the convergence of the matrix elements 
Vjr  + Cjk .  The remaining expression is 

1 1 
2 M  2M G = - IoglA-BI + -@[(A- B)-'B] 

(12) 
Obviously, for the case of a single hidden neuron, expression (12) coincides with the 

related approximation to Gardner's expression [I]  giving similar results for the net capacity 
and the order parameters. However, for the general case it is difficult to extremize the 
expression analytically and one should use numerical methods. 
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5. Numerical solutions and simulations 

Due to the complexity of expression (12) we did not try to optimize it analytically using 
the saddlepoint equations, though for some of the order parameters this can be done (we 
actually use the saddle-point equations for ~ i .  &, Fit and &), simplifying the expression 
significantly. Also, optimizing expression (1 1) numerically is not particularly simple since 
the sensitivity of the expression to the various parameters varies significantly from one 
parameter to another. 

We optimized these terms using two methods: the ‘downhill simplex’ method and the 
adaptive simulated-annealing algorithm [I31 (which is a generalization of the conventional 
simulated-annealing algorithm [ 141). We used these algorithms for optimizing expression 
(12) for various cases, obtaining the dependence of the capacity (orc, the number of stored 
patterns divided by MN) on the number of hidden units for the cases M = 1, . . . , 6 ,  shown 
in figure 1. The results coincide for a single hidden neuron with Gardner’s result and for 
the two-hidden-neuron case with theoretical results achieved using a different method. This 
method based on the capacity of two groups of correlated patterns is explained explicitly in 
appendix A. 

5 EZl 
Figure 1. The dependence of the 
capacity (U,) of a two-layer feed-fonvard 
binary neural net with a single output 
neuron on the number of hidden neurons. 
The full line (and boxes) represents 
theoretical results. the full circles represent 
exact theoretical results for lhe one- 

o-l and two-neuron cases derived in [ I ]  and 
1 2 3 4 5 6 7 appendix A, respectively. and the asterisks 

represent simulation resub for the three- 
and five-neuron cases presented in [ 151. M 

We compared these results for the three- and five-hidden-neuron cases with those 
presented recently for the two-layer percepeon (and the fully connected committee machine) 
[15]. The two sets of results are in good agreement. The capacity shows a moderate increase 
for larger number of hidden neurons resulting from the increase in the combinations of 
internal representationst. One can relate the lower relative capacity of small nets with an 
even number of hidden neurons, in comparison to those with an odd number, to the reduced 
number of different combinations of internal representations. We expect this gap to narrow 
as the number of hidden neurons increases. Though it is hard to draw general conclusions 
from the behaviour of the capacity results for several small systems, the analytic results 
suggest that there is a moderate increase in the capacity orc with the increase in the number 
of hidden neurons M. As the number of hidden neurons increases we expect the capacity 
to rise increasingly rapidly. 

t One should note lhat in spite of the dose relation between lhe capacity as defined by slatistical mechanics and 
the vc dimension [MI, the result obtained is not the vc dimension of the multilayer net. The statistical mechanics 
capacity represenis the capacity of the average case while the vc dimension represenis the worst case 
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Though there is no difficulty in principle in optimizing expressions (11) and (12) for 
any number of hidden units (there are no multi-dimensional integrals after using Kendall’s 
approximation), there are practical difficulties resulting from the large number of parameters. 
Moreover, it is unlikely that the mutual dependence of the parameters in the expression could 
be disentangled since this will break the multilayer net into separated perceptrons. However, 
one can hope that some more general approximations or bounds for the relations between 
the various parameters can emerge, resulting in general results for the large-M case. 

6. Concluding remarks 

In this paper we examine the capacity calculation of a binary two-layer feed-forward neural 
net with a single output neuron. We offer a method for carrying out the calculation based on 
summing over all of the internal representations and breaking explicit symmetries existing 
in such nets. Two methods. one for alleviating and one restoring replica symmetry, are 
introduced. The first relates the various weight components in a way that breaks the most 
significant explicit symmetries, while the second relies on forcing restrictions on the order 
parameters enforcing replica symmetry. 

In addition, we offer approximations for avoiding some of the practical obstacles 
appearing along the calculation, such as the multi-dimensional Gaussian integrals with finite 
limits. We obtain numerical results by optimizing the expressions with respect to the order 
parameters using numerical optimization algorithms (downhill simplex, adaptive simulated 
annealing). 

The methods suggested in this paper for alleviating the replica-symmetry-breaking 
problem by restricting the configuration space are applicable to a variety of calculations 
dealing with multilayer nets both of continuous and discrete representations. Applying 
these methods to other capacity problems is rather simple, though in the case of continuous 
activation functions (where replica symmetry is restored by breaking explicit symmetries) 
one can expect some extremely complicated calculations due to the continuous activation 
functions used. In the case of discrete weights, breaking explicit symmetries is obviously 
insufficient since additional symmetry breaking occurs due to the discreteness of the 
configuration space and microcanonical techniques might be more appropriate. 

Breaking explicit symmetries in multilayer training and generalization calculations 
alleviates the replica-symmetty-breaking problem, which occurs in the course of training 
when node symmetry is broken: however, it is not clear whether it actually restores replica 
symmetry in this case, which probably depends on the way node symmetry is broken, and 
additionalldifferent symmetry breaking might be required for restoring replica symmetry. 
Obviously. the permutation-reflection group generates replicas of each one of the solutions, 
as in the capacity-limit case (some of which are identical due to node symmetry subgroups), 
however, it is not clear whether different original solutions represent a connected region 
in configuration space, In the case of learnable training problems, where a certain end 
solution is defined, one can show that apart from the permutation-reflection symmetry 
all solution hyperspaces, in any stage of the training procedure, are connected since they 
should all include the end solution. Hence, breaking explicit symmetries does restore replica 
symmetry in this case. 

The basic concept, presented in this paper, of breaking explicit symmetries in the 
configuration space offers a method for simplifying complicated neural network calculations; 
however, the identification of the symmetries of the problem and a clever choice of methods 
for breaking them varies from one problem to another and needs to be worked out differently 
for each problem. 
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Appendix A. Capacity of binary two-layer nets with two hidden neurons 

Defining an activation of zero to produce a + output and the two weight components from 
the hidden layer to the output to be equal, one can separate the internal representations in 
the two-hidden-neuron case into two groups. For example. the groups ((++), (-+), (+-)I 
and ((--)I represent the response of the two hidden neurons to the various input vectors. 
The two groups of internal representations are mapped to a + and - output, respectively 
(we can choose any other grouping equally by changing the sign of the hidden-to-output 
vector components or defining the zero activation response differently). For convenience we 
define two groups of vectors 5- E P and si E N ,  mapped to posivite and negative outputs, 
respectively (P and N represent the entire set of stored vectors, mapped to a positive and 
negative output, respectively). 

Since we assume random input-output relations, half of the input vectors are mapped to 
the first group of internal representations while the other half is mapped to (--), Obviously, 
this requires input vectors represented by an internal representation vector (--) to be 
assigned to - in both of the hidden layer neurons, while vectors from the first group 
represented by other internal representations must be assigned to + f o r  at least one ojthe 
hidden neurons. This division creates a situation in which the image of the input vectors in 
the hidden units representation is the following. 

First hidden neuron. The group of vectors N is mapped to a negative hidden layer 
output while part of the vectors in P ,  PI c P is mapped to a positive output. 
Second hidden neuron. The group of vectors N is mapped to a negative output (at the 
hidden layer) while the rest of the vectors in P, Pz c P ,  is mapped to a positive output. 

So, at the end, stored vectors assigned to a negative output are mapped to a (--) 
internal representation while those assigned to a positive output are mapped to one of the 
other internal representations. Clearly PI U PZ = P, representing all of the stored vectors 
with a positive output, and the number of patterns in P equals the number of patterns 
in N (random distribution). This division creates a storage of correlated patterns in the 
two input-to-hidden perceptrons, which we can estimate explicitly [ I ,  171 as ac(p) for a 
certain ratio p between positively and negatively assigned vectors for each one of these two 
perceptrons. Using the capacity expression aE(B), the overall capacity (two layer, two 
hidden neurons) is therefore: 

where p k  = N / ( N  + Pk), adding the number of vectors with a negative output stored in 
both perceptrons B I ( Y ~ ( ~ I )  to the two groups of vectors with positive outputs stored in the 
two erceptrons separately, aC(p,)(l - ,¶I) and a,(Bz)(l - Bz). Examining the capacity 
cu:z'2Punder the constraint PI U Pz = P which includes the same number of vectors as N )  

results in a?,2' = 1.437. 

one can calculate the extremum for ai'" \ "  . This maximum appears where @I = BZ = 5 and 
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Appendix B. Kendall's approximation 

Kendall approximated multi-dimensional Gaussian integrals with general lower limits using 
a binomial distribution: for simplicity we introduce the approximation for the three- 
dimensional case though it can be easily generalized to any number of integrations (and 
variables): 

where the summation is over all possible indices j ,  k. and 1;  f ( s k )  E e - % / f i  and the 
matrix A is of the form 

1 Aiz Ais ... AIM 
A = [  Azi : 1 Az3 

dui ... 
The functions Hj(x) are Hermite polynomials defined as 

The zero-order term can be defined similarly resulting with a multiplication of 
complementary error functions. 

In the reference 1121 one can find a convergence proof for the series as well as other 
useful approximations. 

Appendix C. Obtaining the final expression 

One can use the saddle-point equations for Ei, &, 
these order parameters by others. Expression (8) then includes three main terms. 
(i) The hidden output term 

and E ,  replacing terms related to 

This term can be calculated analytically using integral identities for the complementary 
error function and modifying variables to polar coordinates. This results with the following 
expression: 

where I is the identity matrix. 
(ii) The input hidden term 
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This term cannot be calculated analytically. We therefore use Kendall's approximation for 
the multi-dimensional integrations, obtaining the following expression: 

where 

Examining this term one can see that there are two different terms in the argument of the 
logarithm; since the denominator of S approaches zero, the second term in the logarithm's 
argument is dominant where all of the integration parameters are positive, while the first 
term is dominant in all other integration regions. Separating the integration in all of the 
various regions, one obtains the following expression for this term: 

(iii) The ordering term 
For thee = O  case: 

Applying Kendall's approximation, the small argument expanding the complementary error 
function for small argument, and using the fact that 

- 
one obtains for the first two powers in [R - SI-': 

(C7) 
Using the small-argument approximation for the logarithm, one obtains the end term: 

1 1 
2 M N  2 M N  -- IogIR-SI --t t[(R-S)- 'S] 

- 
where ?I = [ F ( R  - S)l-I[R - S][(R - S)T]-*. 

For the e # 0 case: 
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In the case of e # .O the expression becomes slightly different. Assuming that p >> 4- (since e is a small finite constant while ,/-approaches zero) we can 
use the large (positive) argument expansion for the complementary e m r  function, obtaining 

redefining 

Considering the dominant term of the logarithm we obtain for the entire term: 
1 1 

logIR-SI--tr[(R-S)-’S]+-tr[~S] 
1 -- 

2 M N  2 M N  2 M N  
1 e2 - 1 

+-log [R - S]>f - - 
M N  k,j#k 2 M N  ~ ( ~ 7 s ) ~ ’  

replacing (C8). 
Combining expressions (C2). (C5) and (CS) yields (1 I )  in the text. 
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